

SYSTEMIC REVIEW OPEN ACCESS

DOI: 10.5281/zenodo.4277951

To determine the Effectiveness of current management for the Prophylaxis of **Postoperative Atrial Fibrillation in Cardiac Surgeries**

Muhammad Mansoor Tariq, *Irfan Ullah, **Muhammad Babar Khan, ***Daniyal Tahir, ****Sveda Maryam Ilyas, *****Hira Sheheryar

Department of Surgery, Khyber Teaching Hospital Peshawar-Pakistan, *Department of Stroke, Nevill Hall Hospital Abergavenny, South Wales-UK, **Department of Pathology, Northwest School of Medicine-Pakistan, ***Department of Medicine, Ayub Teaching Hospital Abbotabad-Pakistan, ****Department of Surgery, Hayatabad Medical Complex Peshawar-Pakistan, *****Khyber Medical College Peshawar-Pakistan.

Review Began 30/10/2020 Review Ended 15/11/2020 Published 17/11/2020

Postoperative atrial fibrillation is a very common surgical complication encountered in patients undergoing Cardiac Surgery including Coronary Artery Bypass Grafting and Valvular Surgeries, which leads to increase hospital stay and burden on health care providers. The aim of this review study was to to determine the effectiveness of current management for the Prophylaxis of Postoperative Atrial Fibrillation in Cardiac Surgeries and to propose a possible prophylaxis to prevent POAF. 21 research papers were selected and brought under review after carefully considering the current day evidence for prophylaxis and each having its scientific evidence and background. The papers were carefully reviewed and findings were given in favour of Amiodarone, Ascorbate and B-Blockers including Sotalol. This can rightly be concluded from this study that prophylaxis with Ascorbate for 5 days prior to cardiac surgery along with the use of Amiodarone 1.2 g before surgery and 600 mg/day till 3rd post op day and protocol for B-Blockers will significantly reduce POAF. Also POAF is a clinical complication which needs further studies and research to evaluate effectiveness of the current management for its prevention.

Keywords: Postoperative atrial fibrillation; Cardiac Surgery; Valvular Surgery; CABG

management for the Prophylaxis of Post operative Atrial Fibrillation in Cardiac Surgeries. THE ST ETHO 2020;1(2):14-28

This is an open access article distributed under the terms of the Creative Commons Attribution License CC-BY 4.0., (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original

author and source are credited. https:/thestetho.com PAGE 14

INTRODUCTION

Post Coronary Surgery the commonest complications is Atrial Fibrillation (AF), occurs in about 25 to 40% of patients [1-4]. Over a period of four decades the rate of AF after Cardiac Surgery has increased by 20% from 10% in the 70's to 30% in the last decade, the rates are much higher for older patients and those undergoing Valvular surgeries [5-6]. Due to the seriousness of the condition and the sensitization of the issue in different forums much attention has now been given to AF as an earnest Arrhythmia. Alot has been said about the prevention of AF and there have been guidelines, trials and meta analyses conducted to come up with an effective strategy for the prevention of postoperative cardiac Atrial Fibrillation (POAF).

This funny rhythm causes prolonged hospital stay after surgery, increased risk for stroke and adds significant cost to the total, hence the implications need economic too addressal. [7,8,9,10,11,12]. A study done in 1996 revealed even in the absence of an eventful clinical problem the AF leads to a prolonged hospital stay of CABG patients by a mean 4.9 days leading to an estimated additional 10000 \$ per case [13]. Many approaches including B-Blockers, Amiodarone Magnesium have been made for the prevention of POAF [14]. Still there is an ever growing need to evaluate the best prophylaxis for the POAF and to audit the current management for Prophylaxis of POAF.

The current study is a review of over 20 medical papers written on the subject to evaluate, audit and make recommendations to come up with a better prophylaxis for POAF.

MATERIALS & METHODS

The medical archives including Pubmed, Embase, index copernicus and index medicus were searched to find out suitable articles already published and written on the relevant subject considering Prevention and prophylaxis Postoperative Fibrillation Atrial in cardiac surgeries. Different managements for prophylaxis were found and each had its scientific evidence and background. 20 research papers were selected and brought under review after carefully considering them.

REVIEW: PROPHYLAXIS FOR POST OPERATIVE ATRIAL FIBRILLATION IN CARDIAC SURGERIES

Biatrial Pacing

The most commonly encountered arrhythmia after CABG is AF. [15, 16, 17]. It is very interesting to see that pathogenesis of POAF is perhaps unclear and is taken for multifactorial. There is a whole discussion going on about the electrophysiology of the condition. Due to the local injury that the myocardium gets with the procedure there is development of atrial foci generating electric rhythm.

Biatrial pacing (BAP) is when we activate both the Atriums of the heart at one time. There have been reports that suggest it prevents AF recurrence in paced patients that present with intra-atrial conduction delay (IACD). IACD has a strong association with POAF after CABG. Hence it can be hypothesized that IACD may predispose patients to POAF and BAP may be a an effective tool to prevent it. [18, 19, 20]

There has been evidence showing Prevention of POAF when Biatrial pacing was performed. [21]. A study we took under observation in the current review evaluated the efficacy of biatrial pacing as an effective Prophylactic measure to prevent POAF [22]. Significant reduction in the POAF was with only Four days of BAP after isolated CABG [23]

Atorvastatin

Many trials and researchers have sought to look into the effectiveness of Statins as a prophylaxis for POAF. The first randomized, controlled trial of prophylaxis with statins before elective cardiac surgery was taken up by

ARMYDA (Atorvastatin for Reduction of MYocardial Dysrhythmia After cardiac surgery) study group [24, 25]. Special consideration was given to the evaluation of atorvastatin 40 mg/d, started 1 week before surgery, prevents postoperative atrial fibrillation versus placebo. [26]

Another meta analysis concluded significant reduction in POAF and hospital stay with statin therapy prophylactically. [27] Similar results were published by another study which concluded POAF reduction with statin therapy

This is an open access article distributed under the terms of the Creative Commons Attribution License CC-BY 4.0., (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

preoperatively and also proposed the possibility that further research would establish a relation between type and dosage of statin that was used. [28]

N-3 Fatty Acids

Like all other drugs and techniques used for prophylaxis of POAF, the use of N-3 Fatty Acids have also been found to have association in [29]. arrhythmias. The preventing inflammatory role of N-3 Fatty Acids is well established and could possibly prevent POAF due to speculation of its Pathophysiology of an anti inflammatory process. [30, 31]. The aim of one such study under consideration was to find out the efficacy of N-3 Fatty Acids in preventing POAF. There was seen a 18.1 % and 54.4 % reduction is Absolute and Relative Risk, respectively in incidence of POAF. [32]

Colchicine

POAF is thought to have a multifactorial etiological development. Imbalance of the autonomic nervous system during surgery, inflammatory process of the Pericardium and fluid shift besides other factors may all contribute leading to POAF. [33]. We know that anti inflammatory therapy can be beneficial in preventing POAF.

A trial, Colchicine for the Prevention of the Postpericardiotomy Syndrome (COPPS) concluded that colchicine was safe and efficacious in the prevention of the PPS and it reduced the risk of developing the syndrome after Cardiac Surgery by 50%. [34]

The study under review reveals that the efficacy and safety index of Colchicine in reducing POAF after Cardiac Surgery was significant. This is an important factor in clinical practise considering the safety and low price of the drug. Also the efficacy of the drug in preventing POAF and Postpericardiotomy Syndrome (PPS), the two most common clinical complications of cardiac surgery, reduces the cost significantly. [34, 35]

N-Acetylcysteine

Recent studies have established that the pathophysiology of POAF may lie in the oxidative

stress and inflammation. [36, 37, 38, 39, 40]. Antioxidative agents like Vit C have been attributed to reduction of POAF. [41] Chronic Pulmonary Disease (CPD) is a potential risk factor for POAF [42] The antioxidant nature and mucolytic properties of N-Acetylcysteine (NAC) have demonstrated beneficial effects in CPD. [43]

NAC having significant effect in preventing postoperative respiratory complications, which are risk factors for developing POAF, could be used as a prophylaxis to reduce POAF in patients undergoing Cardiac Surgery, which is evident from the study under review. [44]

Ascorbic Acid

With high risk for stroke and mortality, POAF is an important clinically encountered complication. There is no clear cut answer about the pathophysiology of POAF. it is thought to be multifactorial. Peroxynitrite formation and oxidative stress have been found to have association with formation of POAF. [45] Therefore treatment with ascorbate (antioxidant and peroxynitrite decomposition catalyst) may be helpful along with the use of BAP.

The study under observation found out that Cardiac CABG patients having supplemental Ascorbate for 5 days before surgery had a 16.3% incidence of POAF in comparison to 34.9% in control subjects. [46]

Another similar study audited similar results in favour of reduction in POAF with ascorbate use for patients undergoing CABG. [47]

Amiodar one

A class 3 Antiarrhythmic Drug, Amiodarone is effective in preventing POAF. [48, 49]. Increase myocardial oxygen demand is a side effect we see with the use of B-blockers and negative inotropes. Potassium and magnesium Conc. reduction in the Postoperative Period is key factor leading to the development of inorganic arrhythmias. Identifying and managing this will not put patients to unnecessary use of drugs and their side effects. Magnesium is an important player in keeping a steady Cardiac Rhythm. [50]

Different studies included in the review suggest that patients who underwent Cardiac

This is an open access article distributed under the terms of the Creative Commons Attribution License CC-BY 4.0., (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Surgery tolerated the preoperative oral use of Amiodarone and significantly reduces rate of POAF, the duration and cost of hospitalization. [51]. Low plasma conc. of magnesium and the patient's old age are all risk factors for POAF. [52]

Another such study presented its findings in favour of Prophylactic use of magnesium sulphate following CABG. Both Amiodarone and Magnesium Sulphate are effective but the initial management should rely on administering magnesium prophylactically. The physician can intervene with amiodarone if prophylactic use of magnesium fails resulting in POAF. [53]

Magnesium Sulphate

Many physiological functions of the body need Magnesium for normal functioning. lead to multitude of Hypomagnesaemia may clinical complications including Muscular fibrillation Atrial impaired trembling, and coagulation etc. these clinical manifestations of hypomagnesaemia are critical to a patient undergoing Cardiac Surgery. [54]

As discussed in the above section, different studies have given their findings in favour of prophylactic use of magnesium, resulting low incidence of POAF and shorter hospital stays. On the other hand studies suggest magnesium sulphate alone might not be sufficient as a prophylactic agent. [55]

Due to conflicting results in previously published Magnesium Sulphate trials, One such study was designed to address methodological shortcomings in the previous studies. The largest randomized, placebo-controlled trial of intravenous (IV) MgSO4 for the prevention of POAF in patients undergoing valvular or CABG surgeries, presented its findings that no marked reduction in POAF occurs with the addition of MgSO4, for patients receiving protocol for B-Blocker. [56]

Similar studies included in our review had results considering prophylactic Mg supplementation as a good preventive measure for POAF. [57]. There was significant reduction in the episodes of POAF in the group receiving Mg. Patients tolerated the drug very well. No side effects were observed. [58].

Sotalol & Beta-blockers

A meta analysis revealed significant reduction in the POAF was seen with the use of Prophylactic B-Blocker and sotalol in Cardiac Surgeries. Though it recommended larger studies need to be conducted to know the cost-effectiveness and efficacy of these drugs. [59]

Another meta analysis pointed out similarities between B-blockers, amiodarone and sotalol in preventing POAF with no significant difference between them. Evidence show prevention of POAF reduces hospital stay but no association was found between reduction of POAF and decrease incidence of stroke. [60] For patients receiving protocol for B-Blocker no marked reduction in POAF occurs with the addition of MgSO4 [56]

RESULTS

Research paper	Drug/technique under review	Study design	Study Sampl e Size	Result	Inference
Fan K et al [22]	Biatrial Pacing	RCT-4 Groups	132	POAF reduction in BAP group (12.5%) compared with the other 3 groups (LA-36.4%, RA-33.3% & X-41.9%. P≤0.05)	BAP effective, lower cost and SHS.

This is an open access article distributed under the terms of the Creative Commons Attribution License CC-BY 4.0., (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Levy T et al [23]	Biatrial Pacing	RCT-2 Groups	130	POAF reduction in BAP group (13.8%) compared with (38.5%) X Group. P≤0.001	BAP effective, lower cost and SHS.
Patti G et al [26]	Atorvastatin	RCT-2 Groups	200	POAF reduction in Y Group (35%) compared with (57%) Z Group. P≤0.003	Atorvastatin 40 mg/d 7 days before surgery effective and SHS
Calò L et al [32]	N-3 Fatty Acid	RCT-2 Groups	160	POAF reduction in Y Group (15.2%) compared with (33.3%) X Group. P≤0.013	N-3 Fatty Acid 2g/day 5 days before surgery effective and SHS
Imazio M et al [35]	Colchicine	RDBT-2 Groups	336	POAF reduction in Y Group (12%) compared with (22%) Z Group. P≤0.021	1 mg BD Colchicine 3 days post op effective in preventing AF & PPS, lower cost and SHS.
Ozaydin M et al [44]	N-Acetylcysteine	RDBT- 2 Groups	115	POAF reduction in Y Group (5.1) compared with (21.1%) Z Group. P≤0.019	50-150 mg/kg bolus 1 hr before surgery and 40 mg/kg/day for 24 hrs after surgery effective, lower cost and SHS.
Carnes CA et al [46]	Ascorbate	RCT-2 Groups	86	POAF reduction in Y Group (16.3%) compared with (34.9%) X Group. P=0.05	2 gm Supplemental Ascorbate before and 500mg BD for 5 days after CABG attenuates APIPF & reduces

					POAF
Ebade A et al [47]	Ascorbate & MgSO ₄	RCT-3 Groups	60	POAF reduction in A group (15%) compared with the other 2 groups M-Group (25%) & X Group (40%)	Ascorbate & MgSO ₄ 2 gm after anesthesia induction and 1g/8h for 5 days after surgery is effective and SHS.
Daoud EG et al [51]	Amiodarone	RDBT-2 Groups	124	POAF reduction in A group (25%) compared with the Z Group (53%). P =0.003	600 mg/day amiodarone seven Days before surgery & 200 mg/day until discharge is effective, lower cost and SHS.
Venzi MMT et al [52]	Amiodarone & MgSO ₄	RDBT-3 Groups	155	POAF reduction in A group (14%). P=0.14 compared with the other 2 groups M-Group (23%). P=0.82 & Z Group (27%)	72 h IV Infusion of 900 mg/24h Amiodarone, 4g/24h Magnesium & 50ml/24hr Nacl Placebo. Magnesium no effect but Amiodarone is effective after CABG
Tiryakioglu O et al [53]	Amiodarone & MgSO ₄	RCT-3 Groups	192	Amiodarone significant compared to magnesium sulphate (p = 0.015).	MgSO ₄ 3g/100ml Nacl over 2h for 12h before surgery till 3rd post op day. Amiodarone 1.2 g before surgery and 600 mg/day till 3rd post op day Nacl Placebo.

Kaplan M et al[55]	MgSO ₄	RCT-2 Groups	200	AF developed in 15 patients-Group M & 16 patients-Group X. P=0.845	MgSO ₄ 3g/100ml Nacl over 2h for 12h before, during surgery till 3rd post op day, alone is not sufficient for preventing POAF
Cook RC et al[56]	MgSO ₄ & B-Blocker	RDBT- 2 Groups	677	AF developed in 26.4% patients-Group M & 24.3% patients -Group Z.	IV MgSO ₄ addition to protocol for B-Blocker didn't reduce POAF
Dabrowski W et al [57]	MgSO ₄	RCT-6 Groups	120	ECC resulted in a decrease in Mgt. 3.33 mg/min MgSO ₄ little effect to reduce POAF. 10 mg/min MgSO ₄ reduced POAF significantly	MgSO ₄ had little significance to reduce or prevent POAF
Fanning WJ et al [58]	MgSO ₄	RDBT-2 Groups	99	PSMGS Conc. same (1.90 mEq/L) in group Y & Z. MPSMCI levels were elevated. P < 0.001. MPSMCP levels declined. P < 0.001. MSGC was high in Group Y than Group Z. P < 0.001	Prophylaxis with MgSO ₄ seem to lessen incidence & severity of POAF after CABG
Burgess DC et al [59]	B-Blocker, Sotalol, Amiodarone, Atrial Pacing & MgSO ₄	Meta analysis	94 trials	Odds Ratio for all five is B-Blockers=0.69, Sotalol=0.34, Amiodarone=0.48, MgSO ₄ =0.57 & Biatrial Pacing=0.60. All five interventions reduced the incidence of AF, though the effect of BBs is less than previously documented	Prophylaxis effective, lower cost and SHS.
Crystal E et al [60]	B-Blocker, Sotalol, Amiodarone & Biatrial	Meta analysis	52 Trials	Odds Ratio for all four is B-	Prophylaxis effective,

	Pacing			Blockers=0.39, Sotalol=0.35, Amiodarone=0.48 & Biatrial Pacing=0.46. B-Blockers, Sotalol, and amiodarone Reduce POAF with no marked difference between them	lower cost and SHS. Data on stroke reduction is incomplete.
Archbold RA et al [61]	MgSO ₄	Special Review	NA	Hypomagnesaemia may predispose POAF. Serum [Mg] falls due to haemodilution and beta-adrenergic activation after CABG.	MgSO ₄ had little significance to reduce or prevent POAF
Weber KU et al [62]	Selective versus non- selective antiarrhythmic	RCT-2 Groups	214	Non-selective approach exposed everyone to the possible side-effects of sotalol. Selective approach, reduced POAF 76% to 50%. P=0.0295 compared to a reduction from 44% to 26%. P=0.0065 when everyone treated.	Clinical risk prediction based selective approach is Cost-effective and ensures safety of low-dose sotalol as prophylaxis for POAF after CABG.
Koniari i et al [64]	B-Blocker, Sotalol, Amiodarone & MgSO ₄	Systema tic Review	NA	B-Blocker for all cases of patients undergoing cardiac surgery (until contraindicated). Sotalol for POAF prevention in place of conventional B-Blockers has been advocated (Grade A recommendations). when B-Blocker can not be used Amiodarone can be used as an alternative prophylaxis for POAF or may also be used in conjunction to B-Blocker in high risk cases.	Prophylaxis effective, lower cost and SHS.

Wang HS [65]	Carvedilol	Meta analysis	6 trials- 765 subjec ts	Reduction in POAF 0.37 to 0.64. P=0.001 was seen with Carvedilol and it is Better than metoprolol for prevention of POAF 0.37 to 0.70. P=0.001	Carvedilol is effective & superior to metoprolol for prophylaxis of POAF
--------------	------------	------------------	-------------------------------------	--	--

SHS-Shortened Hospital Stay

RCT-Randomized Clinical Control Trial

BAP-Biatrial Pacing

LA-Left Atrial Pacing

RA- Right atrial pacing

RDBT-Randomized Double Blinded Trial

PPS-Postpericardiotomy Syndrome

APIPF-Atrial Pacing-Induced Peroxynitrite

Formation

X-Control Group

Y-Intervention Group

Z-Placebo Group

A-Amiodarone Group

M- MgSO₄ Group

ECC-Extracorporeal Circulation

Mgt-Total Magnesium Conc.

PSMGS-Preoperative Mean serum Magnesium

Concentration

MPSMCI-mean postoperative serum magnesium

concentration in Intervention Group

MPSMCP-mean postoperative serum magnesium

concentration in Placebo Group

MSGC-mean serum magnesium concentration

DISCUSSION

A study done to evaluate the effectiveness of Biatrial Pacing presented its finding in favour of Biatrial Pacing than single site atrial pacing. The paper also concluded that carefully identifying 'at risk' population for developing POAF and the use of intense prophylactic therapy would lead to shorter hospital stay and decrease the overall cost [22]. Another paper pointed out similar findings and postulated reduced postoperative complications after CABG with the use of BAP [23]

Use of statins has been advocated in various studies as a prophylaxis for POAF. Strong association was found resulting in reduction of POAF with the use of 40 mg/d atorvastatin (started 7 days preoperatively for elective Cardiac Surgery) [26]

Evidence can be found on the use of N-3 Fatty Acid for prevention of POFA. A substantial reduction in POAF (54.4%) associated with consequent shorter hospital stay was demonstrated in patients having CABG. [32]

NAC being a glutathione precursor is basically an antioxidant. Major findings of one the studies included in the review on NAC were lower incidence rates of POAF in intervention group in comparison to Placebo group. [44]. This study also supports the idea of the relation between POAF and Oxidative stress.

One of the study included in the review was important in reaching a conclusion because it had significant amount of patients (57%) included in the study who underwent Valvular surgeries besides those undergoing CABG only. A 7 day oral prophylactic use of Amiodarone before an elective

This is an open access article distributed under the terms of the Creative Commons Attribution License CC-BY 4.0., (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Cardiac Surgery had reduced POAF by 50%, consequently reducing burden on the health facility, lower the total cost and duration of hospital stay and most importantly fewer postoperative clinical complications. No evidence of intra or postoperative complications was found with the use of Amiodarone. The heterogeneity of the study population highlights how efficient is the drug for both CABG and Valvular surgery [51]

POAF after Cardiac and Valvular surgeries is a nuisance which leads to a number of medical complications and increase hospital stay. Preventing such an event from occurring would not only benefit the patient vis a vis health but also decrease hospital burden. Low levels of magnesium have been attributed to POAF but the sole correction or management of magnesium would not prevent POAF. [54]

A study (27 trials) included in our review evaluated 3840 patients for POAF with B-Blocker. There was 14% reduction of POAF in the intervention group (19%) in comparison to control group (33%) [60]. The same study evaluated 1294 patients for POAF with sotalol. There was 20% reduction of POAF in the intervention group (17%) in comparison to control group (37%). It also evaluated 1384 patients for POAF with amiodarone. There was 14.5% reduction of POAF in the intervention group (22.5%) in comparison to control group (37%). Comparison of Sotalol to conventional B-Blocker included 900 patients. There was 10% reduction of POAF in the Sotalol group (22%) in comparison to other B-Blocker group (12%). [60]

Another study in our review concluded its recommendations in favour of B-Blocker for all cases of patients undergoing cardiac surgery (until contraindicated). The use of sotalol for POAF prevention in place of conventional B-Blockers has been advocated (Grade A recommendations) [63]. In cases where B-Blocker can not be used Amiodarone can be used as an alternative prophylaxis for POAF or may also be used in conjunction to B-Blocker in high risk cases. [64]

Another study included in the review concluded that carvedilol is superior to metoprolol in preventing POAF for patients undergoing cardiac surgery. [65]

Another important perspective here is the use of Cardiopulmonary pump. A study shows marked decrease in the AF after off pump surgery in comparison to conventional CABG [66] which makes us to think about systemic inflammatory reaction with the use of Pump may be a key in understanding POAF [67, 68, 69]. In one of the study a significant association was found between the 174C/G polymorphism of the promoter of Interleukin-6 gene and postoperative Interleukin-6 levels leading to AF Development [70]

CONCLUSION

Postoperative atrial fibrillation is a very common surgical complication encountered in patients undergoing Cardiac Surgery including Coronary Artery Bypass Grafting and Valvular Surgeries, which leads to increase hospital stay and burden on health care providers. The papers were carefully reviewed and findings were given in favour of Amiodarone, Ascorbate and B-Blockers including Sotalol. This can rightly be concluded from this study that prophylaxis with Ascorbate for 5 days prior to cardiac surgery along with the use of Amiodarone 1.2 g before surgery and 600 mg/day till 3rd post op day and protocol for B-Blockers will significantly reduce POAF. Also POAF is a clinical complication which needs further studies and research to evaluate the effectiveness of the current management for its prevention.

REFERENCES

- Lauer MS, Eagle KA, Buckley MJ, DeSanctis RW. Atrial fibrillation following coronary artery bypass surgery. Prog Cardiovasc Dis 1989; 31: 367–78.
- Groves PH, Hall RJ. Atrial tachyarrhythmias after cardiac surgery. Eur Heart J 1991; 12: 458–63.
- Hashimoto K, Ilstrup DM, Schaff HV.
 Influence of clinical and hemodynamic variables on risk of supraventricular tachycardia after coronary artery bypass. J
 Thorac Cardiovasc Surg 1991; 101: 56–65.

This is an open access article distributed under the terms of the Creative Commons Attribution License CC-BY 4.0., (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

- Ommen SR, Odell JA, Stanton MS. Atrial arrhythmias after cardiothoracic surgery. N Engl J Med. 1997;336:1429–1434.
- Quader MA, McCarthy PM, Gillinov AM, Alster JM, Cosgrove DM III, Lytle BW, Blackstone EH. Does preoperative atrial fibrillation reduce survival after coronary artery bypass grafting? Ann Thorac Surg 2004; 77:1514–1522.
- Bessissow A, Khan J, Devereaux PJ, Alvarez-Garcia J, Alonso-Coello P. Postoperative atrial fibrillation in noncardiac and cardiac surgery: an overview. J Thromb Haemost 2015; 13(Suppl. 1): S304– S12.
- 7. Creswell LL, Schuessler RB, Rosenbloom M, Cox JL. Hazards of postoperative atrial arrhythmias. Ann Thorac Surg 1993;56:539–549.
- 8. Villareal RP, Hariharan R, Liu B, Kar B, Lee VV, Elayda M, Lopez JA, Rasekh A, Wilson JM, Massumi A. Postoperative atrial fibrillation and mortality after coronary artery bypass surgery. J Am Coll Cardiol 2004;43:742–748.
- Aranki SF, Shaw DP, Adams DH, Rizzo RJ, Couper GS, VanderVliet M, Collins JJ Jr, Cohn LH, Burstin HR. Predictors of atrial fibrillation after coronary artery surgery. Current trends and impact on hospital resources. Circulation 1996;94:390–397.
- Tamis JE, Steinberg JS. Atrial fibrillation independently prolongs hospital stay after coronary artery bypass surgery. Clin Cardiol 2000; 23:155–159.
- 11. Borzak S, Tisdale JE, Amin NB, Goldberg AD, Frank D, Padhi ID, Higgins RS. Atrial fibrillation after bypass surgery: does the arrhythmia or the characteristics of the patients prolong hospital stay? Chest 1998;113:1489–1491.

- Reed G III, Singer DE, Picard EH, DeSanctis RW. Stroke following coronaryartery bypass surgery. A case-control estimate of the risk from carotid bruits. N Engl J Med 1988;319:1246–1250.
- 13. Aranki SF, Shaw DP, Adams DH, et al. Predictors of atrial fibrillation after coronary artery surgery. Circulation. 1996;94:390–397.
- Burgess DC, Kilborn MJ, Keech AC (2006)
 Interventions for prevention of post-operative atrial fibrillation and its complications after cardiac surgery: a meta-analysis. Eur Heart J 27:2846–2857.
- 15. Leitch JW, Thomson D, Baird DK, et al. The importance of age as a predictor of atrial fibrillation and flutter after coronary artery bypass grafting. J Thorac Cardiovasc Surg. 1990;100:338 –342.
- Crosby LH, Pifalo WB, Woll KR, et al. Risk factors for atrial fibrillation after coronary artery bypass grafting. Am J Cardiol. 1990;66:1520 –1522.
- 17. Mathew JP, Parks R, Savino JS, et al, for the Multicenter Study of Perioperative Ischemia Research Group. Atrial fibrillation following coronary artery bypass graft surgery. JAMA. 1996;276:300 –306.
- 18. Buxton AE, Josephson ME. The role of P wave duration as a predictor of postoperative atrial arrhythmias. Chest. 1981;80:68–73
- 19. Daubert C, Berder V, Gras D, et al. Atrial tachyarrhythmias associated with high degree interatrial conduction block: prevention by permanent atrial resynchronization. Eur J Card Pacing Electrophysiol.1994;1:35–44.
- Capucci CA, Frabetti L, Turinetto B, et al. Fibrillazione atriale nei post operati de bypass aorto-coronarica. G Ital Cardiol. 1987;17:575–582.

- 21. Daubert C, Berder V, Gras D, et al. Atrial tachyarrhythmias associated with high degree interatrial conduction block: prevention by permanent atrial resynchronization. Eur J Card Pace Electrophysiol. 1994;1:35–44.
- Fan K, Lee KL, Chiu CS, et al: Effects of biatrial pacing in prevention of postoperative atrial fibrillation after coronary artery bypass surgery. Circulation. 2000; 102:755–760.
- 23. Levy T, Fotopoulos G, Walker S, Rex S, Octave M, Paul V, et al. Randomized controlled study investigating the effect of biatrial pacing in prevention of atrial fibrillation after coronary artery bypass grafting. Circulation 2000;102:1382-7
- 24. Pasceri V, Patti G, Nusca A, Pristipino C, Richichi G, Di Sciascio G. A randomized trial of atorvastatin for reduction of myocardial damage during coronary intervention: results from the ARMYDA (Atorvastatin for Reduction of MYocardial Damage during Angioplasty) study. Circulation. 2004;110:674–678.
- 25. Patti G, Colonna G, Pasceri V, Lassandro Pepe L, Montinaro A, Di Sciascio G. A randomized trial of high loading dose of clopidogrel for reduction of periprocedural myocardial infarction in patients undergoing coronary intervention: results from the ARMYDA-2 (Antiplatelet therapy for Reduction of MYocardial Damage during Angioplasty) study. Circulation. 2005;111:2099 –2106.
- 26. Patti G, Chello M, Candura D, et al. Randomized trial of atorvastatin for reduction of postoperative atrial fibrillation in patients undergoing cardiac surgery: results of the ARMYDA-3 (Atorvastatin for Reduction of MYocardial Dysrhythmia After cardiac surgery) study. Circulation. 2006;114(14):1455–1461.

- 27. Zheng H, Xue, Song, Hu Z, et al. The Use of Statins to Prevent Postoperative Atrial Fibrillation After Coronary Artery Bypass Grafting: A Meta-analysis of 12 Studies. Journal of Cardiovascular Pharmacology. 2014;64(3):285-292.
- 28. Saso S., Vecht J.A., Rao C. Statin therapy may influence the incidence of postoperative atrial fibrillation what is the evidence? Tex Heart Inst J. 2009;36:521–529.
- 29. Mozaffarian D., Psaty B.M., Rimm E.B.; Fish intake and risk of incident atrial fibrillation. Circulation. 110 2004;368-373
- Gaudino M, Andreotti F, Zamparelli R, et al. The 174G/C interleukin-6 polymorphism influences post-operative interleukin-6 levels and post-operative atrial fibrillation. Is atrial fibrillation an inflammatory complication? Circulation 2003;108 Suppl II:II195–9.
- 31. Endres S, Ghorbani R, Kelley VE, et al. The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells. N Engl J Med 1989;320:265–71.
- 32. Calò L, Bianconi L, Colivicchi F, et al. N-3 Fatty Acids for the Prevention of Atrial Fibrillation After Coronary Artery Bypass Surgery: A Randomized, Controlled Trial. J Am Coll Cardiol.2005;45(10):1723-1728.
- 33. Abdelhadi RH, Gurm HS, VanWagoner DR, Chung MK. Relation of an exaggerated rise in white blood cells after coronary bypass or cardiac valve surgery to development of atrial fibrillation postoperatively. Am J Cardiol. 2004;93:1176 –1178.
- 34. Imazio M, Trinchero R, Brucato A, Rovere ME, Gandino A, Cemin R, Ferrua S, Maestroni S, Zingarelli E, Barosi A, Simon C, Sansone F, Patrini D, Vitali E, Ferrazzi P, Spodick DH, Adler Y; COPPS Investigators. COlchicine for the Prevention of the Post-

- pericardiotomy Syndrome (COPPS): a multicentre, randomized, double-blind, placebocontrolled trial. Eur Heart J. 2010;31:2749 –2754.
- 35. Imazio M, Brucato A, Ferrazzi P, Rovere ME, Gandino A, Cemin R, Ferrua S, Belli R, Maestroni S, Simon C, Zingarelli E, Barosi A, Sansone F, Patrini D, Vitali E, Trinchero R, Spodick DH, Adler Y; COPPS Investigators. Colchicine reduces postoperative atrial fibrillation: results of the Colchicine for the Prevention of the Postpericardiotomy Syndrome (COPPS) atrial fibrillation substudy. Circulation. 2011;124:2290–2295. doi: 10.1161/CIRCULATIONA HA.111.026153.
- Lin PH, Lee SH, Su CP, Wei YH. Oxidative damage to mitochondrial DNA in atrial muscle of patients with atrial fibrillation.
 Free Radic Biol Med 2003;35:1310–1318.
- Mihm MJ, Yu F, Carnes CA, Reiser PJ, McCarthy PM, Van Wagoner DR, Bauer JA. Impaired myofibrillar energetics and oxidative injury during human atrial fibrillation. Circulation 2001;104: 174–180.
- 38. Kim YH, Lim DS, Lee JH, Lim DS, Shim WJ, Ro YM, Park GH, Becker KG, Cho-Chung YS, Kim MK. Gene expression profiling of oxidative stress on atrial fibrillation in humans. Exp Mol Med 2003;35:336–349.
- 39. Ozaydin M, Dogan A, Varol E, Kucuktepe Z, Dogan A, Ozturk M, Altinbas A. Statin use before by-pass surgery decreases the incidence and shortens the duration of postoperative atrial fibrillation. Cardiology 2007;107:117–121.
- 40. Kumagai K, Nakashima H, Saku K. The HMG-CoA reductase inhibitor atorvastatin prevents atrial fibrillation by inhibiting inflammation in a canine sterile pericarditis model. Cardiovasc Res 2004; 62:105–111.

- 41. Korantzopoulos P, Kolettis TM, Kountouris E, Dimitroula V, Karanikis P, Pappa E, Siogas K, Goudevenos JA. Oral vitamin C administration reduces early recurrence rates after electrical cardioversion of persistent atrial fibrillation and attenuates associated inflammation. Int J Cardiol 2005;102:321–326.
- 42. ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 guidelines for the management of patients with atrial fibrillation) developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Circulation 2006;114:e257–e354
- 43. Arfsten D, Johnson E, Thitoff A, Jung A, Wilfong E, Lohrke S, Bausman T, Eggers J, Bobb A. Impact of 30-day oral dosing with N-acetyl-L-cysteine on Sprague-Dawley rat physiology. Int J Toxicol 2004;23:239–247.
- 44. Ozaydin M, Peker O, Erdogan D, et al. Nacetylcysteine for the prevention of postoperative atrial fibrillation: a prospective, randomized, placebo-controlled pilot study. European Heart Journal Mar 2008, 29 (5) 625-631
- 45. Mihm MJ, Yu F, Carnes CA, Reiser PJ, McCarthy PM, Van Wagoner DR, Bauer JA. Impaired myofibrillar energetics and oxidative injury during human atrial fibrillation. Circulation. 2001;104:174 –180.
- 46. Carnes CA, Chung MK, Nakayama T, Nakayama H, Baliga RS, Piao S. et al. Ascorbate attenuates atrial pacing-induced peroxynitrite formation and electrical remodeling and decreases the incidence of postoperative atrial fibrillation. Circ Res. 2001;89(6):E32–8. doi: 10.1161/hh1801.097644.

- 47. Ebade A, Taha WS, Saleh RH, Fawzy A. Ascorbic acid versus magnesium for the prevention of atrial fibrillation after coronary artery bypass grafting surgery. Egypt J Cardiothorac Anesth 2014;8:59-65
- 48. Chun S, Sager P, Stevenson W, Nademanee K, Middlekauff H, Singh B. Amiodarone is highly effective in maintaining NSR in refractory atrial fibrillation/flutter. J Am Coll Cardiol 1993;21:203A.
- Middlekauff HR, Wiener I, Stevenson WG. Low-dose amiodarone for atrial fibrillation. Am J Cardiol 1993;72:75F-81F.
- Banach M, Rysz J, Drozdz JA, Okonski P, Misztal M, Barylski M, Irzmanski R, Zaslonka J: Risk factors of atrial fibrillation following coronary artery bypass grafting: a preliminary report. Circ J 2006, 70(4):438-41.
- Emile G. Daoud, M.D., S. Adam Strickberger, M.D., K. Ching Man, D.O., Rajiva Goyal, M.D., G. Michael Deeb, M.D., Steven F. Bolling, M.D., Francis D. Pagani, M.D., Cynthia Bitar, R.N., Marc D. Meissner, M.D., and Fred Morady, M.D. N Engl J Med 1997; 337:1785-1791. DOI: 10.1056/NEIM199712183372501
- 52. Treggiari-Venzi MM, Waeber JL, Perneger TV, Suter PM, Adamec R, Romand JA. Intravenous amiodarone or magnesium sulphate is not cost-beneficial prophylaxis for atrial fibrillation after coronary artery bypass surgery. Br J Anaesth. 2000;85:690–695. doi: 10.1093/bja/85.5.690.
- 53. Tiryakioglu O, Demirtas S, Ari H, Tiryakioglu SK, Huysal K, Selimoglu O, et al. Magnesium sulphate and amiodarone prophylaxis for prevention of postoperative arrhythmia in coronary by-pass operations. J Cardiothorac Surg. 2009;4:8.

- 54. Booth JV, Phillips-Bute B, McCants CB, et al. Low serum magnesium level predicts major adverse cardiac events after coronary artery bypass graft surgery. Am Heart J 2003; 145: 1108-13.
- 55. Kaplan M, Kut MS, Icer UA, Demirtas MM. Intravenous magnesium sulfate prophylaxis for atrial fibrillation after coronary artery bypass surgery. J Thorac Cardiovasc Surg. 2003;125:344–352. doi: 10.1067/mtc.2003.108.
- 56. R. C. Cook, K. H. Humphries, K. Gin et al., "Prophylactic intravenous magnesium sulphate in addition to oral β-blockade does not prevent atrial arrhythmias after coronary artery or valvular heart surgery a randomized, controlled trial," Circulation, vol. 120, no. 1, pp. S163–S169, 2009.
- 57. Dabrowski W, Rzecki Z, Sztanke M, et al. The efficiency of magnesium supplementation in patients undergoing cardiopulmonary bypass: changes in serum magnesium concentrations and atrial fibrillation episodes. Magnes Res 2008;21:205–17
- 58. Fanning WJ, Thomas CS Jr, Roach A, Tomichek R, Alford WC, Stoney WS Jr. Prophylaxis of atrial fibrillation with magnesium sulfate after coronary artery bypass grafting. Ann Thorac Surg.1991;52:529–533. doi: 10.1016/0003-4975(91)90918-G.
- Burgess DC, Kilborn MJ, Keech AC. Interventions for prevention of postoperative atrial fibrillation and its complications after cardiac surgery: a metaanalysis. Eur Heart J. 2006;27(23):2846– 2857. doi: 10.1093/eurheartj/ehl272.
- 60. Crystal E, Connolly SJ, Sleik K, Ginger TJ, Yusuf S. Interventions on prevention of postoperative atrial fibrillation in patients

- undergoing heart surgery: a metaanalysis. Circulation. 2002;106:75–80.
- 61. Archbold RA, Zaman AG. Magnesium for atrial fibrillation after coronary artery bypass graft surgery: its role in aetiology and prevention. Crit Care Resusc. 2000 Dec;2(4):260-8.
- 62. Weber, U.K., Osswald, S., Huber, M. et al, Selective versus non-selective antiarrhythmic approach for prevention of atrial fibrillation after coronary surgery (is there a need for pre-operative risk stratification?). Eur Heart J. 1998;19:794–800.
- 63. Dunning J, Treasure T, Versteegh M, Nashef S, EACTS Audit and Guidelines Committee: Guidelines on the prevention and management of de novo atrial fibrillation after cardiac and thoracic surgery. European Journal of Cardiothoracic Surgery 2006, 30:852-872.
- 64. Koniari I, Apostolakis E, Rogkakou C, Baikoussis NG, Dougenis D. Pharmacologic prophylaxis for atrial fibrillation following cardiac surgery: a systematic review. J Cardiothorac Surg. 2010;30:121. doi: 10.1186/1749-8090-5-121.
- 65. Wang HS, Wang ZW, Yin ZT (2014) Carvedilol for prevention of atrial

- fibrillation after cardiac surgery: a metaanalysis. PLoS One 9: e94005 doi: 10.1371/journal.pone.0094005
- 66. Ascione R, Caputo M, Calori G, et al. Predictors of atrial fibrillation after conventional and beating heart coronary surgery. Circulation. 2000;102: 1530–1535.
- 67. Buffolo E, Silva de Andrade JC, Rodrigues Branco JN, et al. Coronary artery bypass grafting without cardiopulmonary bypass. Ann Thorac Surg. 1996;61:63–66.
- 68. Cohn WE, Sirois CA, Johnson RG. Atrial fibrillation after minimally invasive coronary artery bypass grafting: a retrospective, matched study. J Thorac Cardiovasc Surg. 1999;117:298–301.
- 69. Abreu JE, Reilly J, Salzano RP, et al. Comparison of frequencies of atrial fibrillation after coronary artery bypass grafting with and without the use of cardiopulmonary bypass. Am J Cardiol. 1999;83:775–776.
- Gaudino M, Andreotti F, Zamparelli R, et al. The -174G/C Interleukin-6 Polymorphism Influences Postoperative Interleukin-6 Levels and Postoperative Atrial Fibrillation. Is Atrial Fibrillation an Inflammatory Complication? Circulation. 2003;108:II-195-II-199.

Address for Correspondence:

Muhammad Mansoor Tariq, Department of Surgery, Khyber Teaching Hospital Peshawar-Pakistan

Cell: +92-341-9093103

Email: alimansoor.tariq@hotmail.com

This is an open access article distributed under the terms of the Creative Commons Attribution License CC-BY 4.0., (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.